首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41871篇
  免费   7243篇
  国内免费   5433篇
化学   30133篇
晶体学   542篇
力学   2568篇
综合类   489篇
数学   4809篇
物理学   16006篇
  2024年   30篇
  2023年   744篇
  2022年   893篇
  2021年   1286篇
  2020年   1660篇
  2019年   1635篇
  2018年   1404篇
  2017年   1387篇
  2016年   1918篇
  2015年   1985篇
  2014年   2341篇
  2013年   3072篇
  2012年   3669篇
  2011年   3963篇
  2010年   2714篇
  2009年   2683篇
  2008年   2978篇
  2007年   2664篇
  2006年   2467篇
  2005年   2017篇
  2004年   1650篇
  2003年   1329篇
  2002年   1316篇
  2001年   1042篇
  2000年   916篇
  1999年   857篇
  1998年   703篇
  1997年   718篇
  1996年   716篇
  1995年   590篇
  1994年   585篇
  1993年   420篇
  1992年   356篇
  1991年   352篇
  1990年   260篇
  1989年   196篇
  1988年   188篇
  1987年   158篇
  1986年   139篇
  1985年   118篇
  1984年   87篇
  1983年   76篇
  1982年   63篇
  1981年   44篇
  1980年   42篇
  1979年   20篇
  1978年   11篇
  1977年   10篇
  1976年   11篇
  1975年   15篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
101.
Intrinsically luminescent room‐temperature ionic liquids (RTILs) can be prepared by combining a luminescent anion (more common) or cation with appropriate counter ions, rendering new luminescent soft materials. These RTILs are still new, and many of their photochemical properties are not well known. A novel intrinsic luminescent RTIL based on the 8‐anilinonaphthalene‐1‐sulfonate ([ANS]) anion combined with the trihexyltetradecylphosphonium ([P6,6,6,14]) cation was prepared and characterized by spectroscopic techniques. Detailed photophysical studies highlight the influence of the ionic liquid environment on the ANS fluorescence, which together with rheological and 1H NMR experiments illustrate the effects of both the viscosity and electrostatic interactions between the ions. This material is liquid at room temperature and possesses a glass transition temperature (Tg) of 230.4 K. The fluorescence is not highly sensitive to factors such as temperature, but owing to its high viscosity, dynamic Stokes shift measurements reveal very slow components for the IL relaxation.  相似文献   
102.
103.
Microporous carbons afford high surface areas, large pore volumes, and good conductivity, and are fascinating over a wide range of applications. Traditionally synthesized microporous carbon materials usually suffer from some limitations, such as poor accessibility and slow mass transport of molecules due to the micrometer-scale diffusion pathways and space confinement imposed by small pore sizes. Two-dimensional microporous carbon materials, denoted as microporous carbon nanosheets (MCNs), possess nanoscale thickness, which allows fast mass and heat transport along the z axis; thus overcoming the drawbacks of their bulk counterparts. Herein, recent breakthroughs in the synthetic strategies for MCNs are summarized. Three typical methods are discussed in detail with several examples: pyrolysis of organic precursors with 2D units, a templating method that uses wet chemistry, and the molten salt method. Among them, molecular-based assembly of MCNs in the liquid phase shows more controllable morphology, thickness, and pore size distribution. Finally, challenges in this research area are discussed to inspire future explorations.  相似文献   
104.
The practical application of advanced personalized electronics is inseparable from flexible, durable, and even self-healable energy storage devices. However, the mechanical and self-healing performance of supercapacitors is still limited at present. Herein, highly transparent, stretchable, and self-healable poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPSA)/poly(vinyl alcohol) (PVA)/LiCl polyelectrolytes were facilely prepared by one-step radical polymerization. The cooperation of PAMPSA and PVA significantly increased the mechanical and self-healing capacity of the polyelectrolyte, which exhibited superior stretchability of 938 %, stress of 112.68 kPa, good electrical performance (ionic conductivity up to 20.6 mS cm−1), and high healing efficiency of 92.68 % after 24 h. After assembly with polypyrrole-coated single-walled carbon nanotubes, the resulting as-prepared supercapacitor had excellent electrochemical properties with high areal capacitance of 297 mF cm−2 at 0.5 mA cm−2 and good rate capability (218 mF cm−2 at 5 mA cm−2). Besides, after cutting in two the supercapacitor recovered 99.2 % of its original specific capacitance after healing for 24 h at room temperature. The results also showed negligible change in the interior contact resistance of the supercapacitor after ten cutting/healing cycles. The present work provides a possible solution for the development of smart and durable energy storage devices with low cost for next-generation intelligent electronics.  相似文献   
105.
The effects of bamboo flour (BF) content on the dynamic rheological properties of BF-filled HDPE composites were investigated. Our findings showed that the addition of BF caused an enhancement of the non-Newtonianism of wood-plastic composites (WPCs) melt as well as the appearance of some new relaxation processes. In addition, the viscosity and modulus of the BF-filled HDPE composites showed a remarkable increase at 170?°C and 190?°C when the BF content exceeded 30%, which could be associated with the solid-like property of the WPCs at high BF loading, we propose. The present study we suggest will be useful to the formula design as well as the optimization of processing parameters for WPCs in general.  相似文献   
106.
Principal eigenvectors of adjacency matrices are often adopted as measures of centrality for a graph or digraph. However, previous principal-eigenvector-like measures for a digraph usually consider only the strongly connected component whose adjacency submatrix has the largest eigenvalue. In this paper, for each and every strongly connected component in a digraph, we add weights to diagonal elements of its member nodes in the adjacency matrix such that the modified matrix will have the new unique largest eigenvalue and corresponding principal eigenvectors. Consequently, we use the new principal eigenvectors of the modified matrices, based on different strongly connected components, not only to compose centrality measures but also to identify bowtie structures for a digraph.  相似文献   
107.
Tuning fluorescence colour of solid-state materials has become a topic of increasing interest for both fundamental mechanism study and practical applications such as sensors, optical recording and security printing. In this work, a fluorescent colour tuneable molecule BA-C16 is rationally designed and facilely synthesized by attaching flexible long alkyl chains to 2-hydroxybenzophenone azine ( BA ), which shows both aggregation-induced emission (AIE) and excited-state intramolecular proton transfer (ESIPT) characteristics. Compared to BA , the simple introduction of long alkyl chains in BA-C16 leads to an emission wavelength redshift from 542 to 558 nm. This strategy of extending emission wavelength is rarely reported, and is ascribed to the enlarged through-space π-conjugation between interplanar molecules in the aggregate of BA-C16 . Three crystals of BA-C16 are obtained with green, yellowish green and yellow emission. According to characterization by X-ray crystallography, X-ray powder diffraction and differential scanning calorimetry, alkyl chains play an important role in inducing different stacking modes of the three crystals, which further leads to polymorph-dependent fluorescence colour. BA-C16 exhibits tuneable solid-state fluorescence upon vapor fumigation, or annealing based on a transition between a “near-monomer” crystalline state and a “dimer” crystalline state. BA-C16 is further applied for rewritable fluorescence printing tuned by vapor- and thermal-treatment.  相似文献   
108.
109.
The fundamental understanding of the subtle interactions between molecules and plasmons is of great significance for the development of plasmon‐enhanced spectroscopy (PES) techniques with ultrahigh sensitivity. However, this information has been elusive due to the complex mechanisms and difficulty in reliably constructing and precisely controlling interactions in well‐defined plasmonic systems. Herein, the interactions in plasmonic nanocavities of film‐coupled metallic nanocubes (NCs) are investigated. Through engineering the spacer layer, molecule–plasmon interactions were precisely controlled and resolved within 2 nm. Efficient energy exchange interactions between the NCs and the surface within the 1–2 nm range are demonstrated. Additionally, optical dressed molecular excited states with a huge Lamb shift of ≈7 meV at the single‐molecule (SM) level were observed. This work provides a basis for understanding the underlying molecule–plasmon interaction, paving the way for fully manipulating light–matter interactions at the nanoscale.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号